ArAR – Argon Age Recalculator: Documentation

Version: 1.00.01

Group 18 Laboratories School of Earth and Space Exploration Arizona State University Tempe, AZ 85287

Nomenclature

May, 2017

Contents

1	 ⁴⁰K Decay Constants 1.1 Symbols for 'Old' ⁴⁰K Decay Constants	2 2 2					
2	K Isotopic Abundance Values 2.1 Symbols for 'Old' K Isotopic Abundances 2.2 Symbols for 'New' K Isotopic Abundances	3 3 3					
3	Monitor Mineral Ages						
4	Multiple Intercalibration Quantities						
 5 Alternate and Additional Symbols 5.1 Quantities Used in the ArAR Libraries 5.2 Quantities Used in the Main ArAR Change Log and the History Tool 5.3 Quantities Used in the ArAR Multiple Intercalibration Log 							

In designing the *ArAR* software, I have attempted to use a set of intuitive symbols to represent the several physical quantities that must be defined to "recalculate" previously published (i.e., *legacy*) K-Ar and 40 Ar/³⁹Ar data. In the interest of clarity, however, I have compiled a list of the symbols that I employed in the *ArAR* graphical user interface (GUI), libraries, and change log, and I have explicitly defined them here. I have grouped them as follows: (1) ⁴⁰K Decay Constants, (2) K Isotopic Abundance Values, (3) Monitor Mineral Ages, (4) Multiple Intercalibration Quantities, and (5) Alternate and Additional Symbols. The symbols in groups 1–4 are exclusively used in the *ArAR* GUI, while those in group 5 are used in the *ArAR* libraries and change logs. For more details on how to use the *ArAR* software, please see the Manual.

1 ⁴⁰K Decay Constants

1.1 Symbols for 'Old' ⁴⁰K Decay Constants

- λ_{40Ar_o} = Partial decay constant for ⁴⁰K that accounts for the production of ⁴⁰Ar by electron capture and positron emission (i.e., $\lambda_{40Ar_o} = \lambda_{\varepsilon_o} + \lambda_{\beta_o^+}$), though the contribution from the latter decay mode is often considered negligible. This is the value that was used to obtain the originally published data.
 - λ_{β_o} = Partial decay constant for ⁴⁰K that accounts for the production of ⁴⁰Ca by beta decay. This is the value that was used to obtain the originally published data.
 - λ_o = Total decay constant for ⁴⁰K, calculated as $\lambda_o = \lambda_{40Ar_o} + \lambda_{\beta_o}$. This is the value that was used to obtain the originally published data.
- $\lambda_{40Ar_o}/\lambda_o =$ Branching ratio for the decay of 40 K; describes the fraction of decay events that produce 40 Ar. This value is displayed for convenience when recalculating legacy data.

$$t_{1/2o}$$
 = Half life of ⁴⁰K, calculated using the relation $t_{1/2o} = \log(2)/\lambda_o$, where log is the natural logarithm (base e).

 $\tau_o =$ Mean life of 40 K, calculated simply as $\tau_o = 1/\lambda_o$.

Note: only the partial decay constants, λ_{40Ar_o} and λ_{β_o} , and total decay constant, λ_o , are used when recalculating legacy data. By default, λ_o is calculated automatically from λ_{40Ar_o} and λ_{β_o} to maintain full machine precision during computation. However, it may be edited manually by unchecking the "Use Calculated Values" checkbox in the 'Old' Decay Constants panel of the main *ArAR* GUI. (The manually entered value will be used in this case.) The values for $\lambda_{40Ar_o}/\lambda_o$, $t_{1/2o}$, and τ_o are displayed for convenience. See the Calculations documentation for further details on how legacy data are recalculated.

1.2 Symbols for 'New' ⁴⁰K Decay Constants

- λ_{40Ar} = Partial decay constant for ⁴⁰K that accounts for the production of ⁴⁰Ar by electron capture and positron emission (i.e., $\lambda_{40Ar_o} = \lambda_{\varepsilon_o} + \lambda_{\beta_o^+}$), though the contribution from the latter decay mode is often considered negligible. This is the value that is used to recalculate legacy data.
 - λ_{β} = Partial decay constant for ⁴⁰K that accounts for the production of ⁴⁰Ca by beta decay. This is the value that is used to recalculate legacy data.

- λ = Total decay constant for ⁴⁰K. Value used to recalculate legacy data.
- $\lambda_{40Ar}/\lambda =$ Branching ratio for the decay of 40 K; describes the fraction of decay events that produce 40 Ar. This value is displayed for convenience when recalculating legacy data.
 - $t_{1/2}$ = Half life of ⁴⁰K, calculated using the relation $t_{1/2} = \log(2)/\lambda$, where log is the natural logarithm (base *e*).
 - τ = Mean life of ⁴⁰K, calculated simply as $\tau = 1/\lambda$.

Note: only the partial decay constants, λ_{40Ar} and λ_{β} , and total decay constant, λ , are used when recalculating legacy data. By default, λ is calculated automatically from λ_{40Ar} and λ_{β} to maintain full machine precision during computation. However, it may be edited manually by unchecking the "Use Calculated Values" checkbox in the 'New' Decay Constants panel of the main *ArAR* GUI. (The manually entered value will be used in this case.) The values for λ_{40Ar}/λ , $t_{1/2}$, and τ are displayed for convenience. See the Calculations documentation for further details on how legacy data are recalculated.

2 K Isotopic Abundance Values

2.1 Symbols for 'Old' K Isotopic Abundances

- ${}^{39}K_{ao}$ = Isotopic abundance of 39 K relative to total K (as percent). This value is displayed for convenience when recalculating legacy data.
- ${}^{40}K_{ao}$ = Isotopic abundance of 40 K relative to total K (as percent). This is the value that was used to obtain the originally published data.
- ${}^{41}K_{ao}$ = Isotopic abundance of 41 K relative to total K (as percent). This value is displayed for convenience when recalculating legacy data.

Note: only the relative isotopic abundance of 40 K, ${}^{40}K_{ao}$, is used when recalculating legacy data. See the Calculations documentation for further details on how legacy data are recalculated.

2.2 Symbols for 'New' K Isotopic Abundances

- ${}^{39}K_a$ = Isotopic abundance of 39 K relative to total K (as percent). This value is displayed for convenience when recalculating legacy data.
- ${}^{40}K_a$ = Isotopic abundance of 40 K relative to total K (as percent). This is the value that is used to recalculate legacy data.
- ${}^{41}K_a$ = Isotopic abundance of 39 K relative to total K (as percent). This value is displayed for convenience when recalculating legacy data.

Note: only the relative isotopic abundance of 40 K, 40 K_a, is used when recalculating legacy data. See the Calculations documentation for further details on how legacy data are recalculated.

3 Symbols for 'Old' and 'New' Monitor Mineral Ages

- t_{m_o} = The age of the monitor mineral that was used to determine dates for unknown samples. This is the value that was used to obtain the originally published data.
- t_m = The age of the monitor mineral that was used to determine dates for unknown samples. This is the value that is used to recalculate legacy data.

See the Calculations documentation for further details on how legacy data are recalculated.

4 Multiple Intercalibration Quantities

The *ArAR* Multiple Intercalibration Tool uses the same symbols for the ⁴⁰K Decay Constants as those listed in section 1.2. Additional symbols that are used in the Multiple Intercalibration Tool are listed below.

 $\kappa \equiv {}^{40}Ar^*/{}^{40}K =$ The experimentally determined ${}^{40}Ar^*/{}^{40}K$ ratio of the primary standard used for multiple intercalibration of an unknown.

- t_0 = The age of the primary standard used for multiple intercalibration of an unknown.
- t_i = The age of a secondary standard used for multiple intercalibration of an unknown.
- t_{n-1} = The age of the unknown that is being intercalibrated against a primary standard and one or more secondary standards.

 ${}^{40}Ar^*/{}^{39}Ar_K =$ The experimentally determined ${}^{40}Ar^*/{}^{39}Ar_K$ ratio of a primary or secondary standard, or the unknown that is being intercalibrated.

5 Alternate and Additional Symbols

5.1 Quantities Used in the ArAR Libraries

To facilitate rapid recalculation of legacy K-Ar and 40 Ar/ 39 Ar data, *ArAR* includes three libraries with published values for K decay constants, K isotopic abundances, and monitor mineral

ages. For more information on how these libraries are stored and how to edit their contents, see the Manual. Since these libraries use alternate plain-text symbols for the quantities listed in the previous sections, the symbols are defined below.

- L_40Ar \implies Partial decay constant for ⁴⁰K that accounts for the production of ⁴⁰Ar by electron capture and positron emission (i.e., $\lambda_{40Ar} = \lambda_{\varepsilon} + \lambda_{\beta^+}$), though the contribution from the latter decay mode is often considered negligible. Library values for this quantity may be used for λ_{40Ar_o} and λ_{40Ar} in the main *ArAR* GUI.
 - L_b \implies Partial decay constant for ⁴⁰K that accounts for the production of ⁴⁰Ca by beta decay. Library values for this quantity may be used for λ_{β_o} and λ_{β} in the main *ArAR* GUI.
 - 39K \implies Isotopic abundance of ³⁹K relative to total K (as percent). Library values for this quantity may be used for ³⁹K_{ao} and ³⁹K_a in the main *ArAR* GUI.
 - 40K \implies Isotopic abundance of ⁴⁰K relative to total K (as percent). Library values for this quantity may be used for ⁴⁰K_{ao} and ⁴⁰K_a in the main *ArAR* GUI.

41K
$$\implies$$
 Isotopic abundance of ⁴¹K relative to total K (as percent). Library values
for this quantity may be used for ⁴¹K_{ao} and ⁴¹K_a in the main *ArAR* GUI.

Values for monitor mineral ages are simply stored in the *ArAR* library under the heading "Age". Note, the values stored in these libraries are accessible to both the 'Old' and 'New' control panels in the *ArAR* GUI for each respective quantity. For example, values in the "K Decay Constants" library may be used in both the 'Old' and 'New' Decay Constants panels.

5.2 Quantities Used in the Main ArAR Change Log and the Recalculation History Tool

Every time a K-Ar or ⁴⁰Ar/³⁹Ar date is recalculated in *ArAR*, an entry is created in the change log for that date that includes all values used to recalculate the date (e.g., λ_o , λ , ⁴⁰K_{ao}, ⁴⁰K_a, t_{m_o} , t_m , etc.), as well as ancillary information related to the K decay constants (e.g., the half-life $t_{1/2o}$ corresponding to λ_o), K isotopic abundance values (e.g., the values of ³⁹K_a and ⁴¹K_a), monitor minerals (e.g., the names of the selected monitors), and *ArAR* library selections and warnings (e.g., if uncertainty values were assumed or any values were manually edited by the user in the main *ArAR* window). The change log is intended to preserve a record of all age recalculations, and because the column headers use alternate plain-text symbols for all quantities, the symbols are defined below. The symbols 'to,' 'toU,' 't,' and 'tU' are also employed in the *ArAR* Recalculation History Tool (see 'General Change Log Entries below and the *ArAR* Manual).

General Change Log Entries:

- Method \implies The algorithm that was used to recalculate legacy data: either 'K-Ar' or 'Ar-Ar.' See the Calculations documentation for further details.
 - to \implies The value of the 'old' K-Ar or 40 Ar/ 39 Ar date before recalculation.
 - to U \implies The uncertainty in the 'old' K-Ar or 40 Ar/ 39 Ar date before recalculation.
 - t \implies The value of the 'new' K-Ar or 40 Ar/ 39 Ar date after recalculation.
 - tU \implies The uncertainty in the 'new' K-Ar or ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ date after recalculation.

Change Log Entries for 'Old' K Decay Constants:

oKdcRef	\implies	The reference selected from the ArAR library for 'old' K decay
		constants. See the ArAR Manual for additional details.
Laro	\implies	The same as $\lambda_{{}^{40}\!Ar_o}$ in the 40 K Decay Constants section.
LaroU	\implies	The uncertainty in the value of 'Laro' (i.e., $\sigma_{\lambda_{40_{Aro}}}$).
Lbo	\implies	The same as λ_{β_o} in the ⁴⁰ K Decay Constants section.
LboU	\implies	The uncertainty in the value of 'Lbo' (i.e., $\sigma_{\lambda_{\beta_o}}$).
Lo	\implies	The same as λ_o in the ⁴⁰ K Decay Constants section.
LoU	\implies	The uncertainty in the value of 'Lo' (i.e., σ_{λ_o}).
Во	\implies	The same as $\lambda_{40Ar_o}/\lambda_o$ in the ⁴⁰ K Decay Constants section.
BoU	\implies	The uncertainty in the value of 'Bo' (i.e., $\sigma_{\lambda_{40_{Aro}}/\lambda_o}$).
HLo	\implies	The same as $t_{1/2o}$ in the ⁴⁰ K Decay Constants section.
HLoU	\implies	The uncertainty in the value of 'HLo' (i.e., $\sigma_{t_{1/2o}}$).
MLo	\implies	The same as τ_o in the ⁴⁰ K Decay Constants section.
MLoU	\implies	The uncertainty in the value of 'MLo' (i.e., σ_{τ_o}).
oKdcModified	\implies	Indicates whether the values and/or uncertainties for $\lambda_{40\!Ar_o}, \ \lambda_{eta_o},$
		and/or λ_o were edited manually by the user. If 'true,' the values
		used during calculations may not reflect those stored in the ArAR
		library for the selected reference.
oKdcUwarning	\implies	Indicates that relative uncertainties were assumed for the 'old' K
		decay contants ('true'), or that uncertainties were available in the
		the ArAR library (warning was off, or 'false'). See the ArAR Man-
		ual for additional details.
oKdcUseCalced	\implies	Indicates whether the 'old' total decay constant, λ_o , was calculated
		automatically from the partial decay constants ('true'), or that the

user entered a value manually ('false).

Change Log Entries for 'New' K Decay Constants:

nKdcRef	\Rightarrow	The reference selected from the ArAR library for 'new' K decay
		constants. See the ArAR Manual for additional details.
Lar	\implies	The same as λ_{40Ar} in the ⁴⁰ K Decay Constants section.
LarU	\implies	The uncertainty in the value of 'Lar' (i.e., $\sigma_{\lambda_{40_{Ar}}}$).
Lb	\implies	The same as λ_{β} in the ⁴⁰ K Decay Constants section.
LbU	\implies	The uncertainty in the value of 'Lb' (i.e., $\sigma_{\lambda_{\beta}}$).
L	\implies	The same as λ in the ⁴⁰ K Decay Constants section.
LU	\implies	The uncertainty in the value of 'L' (i.e., σ_{λ}).
В	\implies	The same as λ_{40Ar}/λ in the ⁴⁰ K Decay Constants section.
BU	\implies	The uncertainty in the value of 'B' (i.e., $\sigma_{\lambda_{40_{4r}}/\lambda}$).
HL	\implies	The same as $t_{1/2}$ in the ⁴⁰ K Decay Constants section.
HLU	\implies	The uncertainty in the value of 'HL' (i.e., $\sigma_{t_{1/2}}$).
ML	\implies	The same as $ au$ in the ⁴⁰ K Decay Constants section.
MLU	\implies	The uncertainty in the value of 'ML' (i.e., σ_{τ}).
nKdcModified	\implies	Indicates whether the values and/or uncertainties for λ_{40Ar} , λ_{β} ,
		and/or λ were edited manually by the user. If 'true,' the values
		used during calculations may not reflect those stored in the ArAR
		library for the selected reference.
nKdcUwarning	\implies	Indicates that relative uncertainties were assumed for the 'new' K
		decay contants ('true'), or that uncertainties were available in the
		the ArAR library (warning was off, or 'false'). See the ArAR Man-
		ual for additional details.
nKdcUseCalced	\implies	Indicates whether the 'new' total decay constant, λ , was calculated
		automatically from the partial decay constants ('true'), or that the
		user entered a value manually ('false).
Change Log Entr	ies for	'Old' K Isotonia Abundanca Valuas:
oKioPof	\rightarrow	The reference calculated from the ArAP library for 'old' K isotopic
UNIANCI		The reference selected from the AFAR horary for old K isotopic abundances. See the $ArAP$ Manual for additional datails
V20 o		The same as ${}^{39}V$ in the K leatonic A bundance Values section
K2001	\implies	The uncertainty in the value of ' K^{20c} ' (i.e., $\sigma_{\rm ev}$)
K390U	\Rightarrow	The same as $\frac{40}{V}$ in the V lastonia Abundance Values setting
K400	\implies	The same as ${}^{\sim}K_{ao}$ in the K isotopic Abundance values section.
K40oU	\implies	The uncertainty in the value of "K400" (i.e., $\sigma_{40K_{ao}}$).

- K410 \implies The same as ${}^{41}K_{ao}$ in the K Isotopic Abundance Values section.
- K41oU \implies The uncertainty in the value of 'K41o' (i.e., $\sigma_{^{41}K_{ao}}$).

Change Log Entries for 'Old' K Isotopic Abundance Values (cont'd):

- oKiaModified \implies Indicates whether the values and/or uncertainties for ${}^{39}K_{ao}$, ${}^{40}K_{ao}$, and/or ${}^{41}K_{ao}$ were edited manually by the user. If 'true,' the values used during calculations may not reflect those stored in the *ArAR* library for the selected reference.
- oKiaUwarning \implies Indicates that relative uncertainties were assumed for the 'old' K isotopic abundance values ('true'), or that uncertainties were available in the the *ArAR* library (warning was off, or 'false'). See the *ArAR* Manual for additional details.

Change Log Entries for 'New' K Isotopic Abundance Values:

- $nKiaRef \implies The reference selected from the ArAR library for 'new' K isotopic abundances. See the ArAR Manual for additional details.$
 - K39 \implies The same as ${}^{39}K_a$ in the K Isotopic Abundance Values section.
 - K39U \implies The uncertainty in the value of 'K39' (i.e., σ_{39K_a}).
 - K40 \implies The same as ${}^{40}K_a$ in the K Isotopic Abundance Values section.
 - K40U \implies The uncertainty in the value of 'K40' (i.e., σ_{40K_a}).
 - K41 \implies The same as ${}^{41}K_a$ in the K Isotopic Abundance Values section.
 - K41U \implies The uncertainty in the value of 'K41' (i.e., $\sigma_{^{41}K_a}$).
- nKiaModified \implies Indicates whether the values and/or uncertainties for ${}^{39}K_a$, ${}^{40}K_a$, and/or ${}^{41}K_a$ were edited manually by the user. If 'true,' the values used during calculations may not reflect those stored in the *ArAR* library for the selected reference.
- nKiaUwarning \implies Indicates that relative uncertainties were assumed for the 'new' K isotopic abundance values ('true'), or that uncertainties were available in the the *ArAR* library (warning was off, or 'false'). See the *ArAR* Manual for additional details.

Change Log Entries for 'Old' Monitor Mineral Ages:

- oMonUseLib \implies Indicates that the 'old' monitor mineral age and uncertainty were sourced from the *ArAR* library ('true'), or that they were taken from the active dataset (oMonUseLib = 'false').
- oMonUseExternal \rightarrow Indicates whether the external ('true') or internal ('false') uncertainty was used for the 'old' monitor mineral age (if data were sourced from the *ArAR* library).

Change Log Entries for 'Old' Monitor Mineral Ages (cont'd):

- oMonMineral \implies The name of the 'old' monitor mineral selected from the *ArAR* library, 'Custom' if no mineral was selected from the *ArAR* library, or 'Custom from Dataset' if monitor age data were sourced from the active dataset.
 - oMonRef \implies The reference selected from the *ArAR* library for 'old' monitor mineral age data, 'Custom' if no reference was selected from the *ArAR* library, or 'Custom from Dataset' if monitor age data were sourced from the active dataset.
 - Mo \implies The same as t_{m_o} in the Symbols for 'Old' and 'New' Monitor Mineral Ages section.

MoU \implies The uncertainty in the value of 'Mo' (i.e., $\sigma_{t_{mo}}$).

- oMonModified \implies Indicates whether the values and/or uncertainties for t_{m_o} were edited manually by the user. If 'true,' the values used during calculations may not reflect those stored in the *ArAR* library for the selected reference.
- oMonUwarning \implies Indicates that a relative uncertainty was assumed for the 'old' monitor mineral age ('true'), or that an uncertainty was available in the the *ArAR* library (warning was off, or 'false'). See the *ArAR* Manual for additional details.

Change Log Entries for 'New' Monitor Mineral Ages:

- $nMonUseLib \implies$ Indicates that the 'new' monitor mineral age and uncertainty were sourced from the *ArAR* library ('true'), or that they were taken from the active dataset (nMonUseLib = 'false').
- nMonUseExternal \implies Indicates whether the external ('true') or internal ('false') uncertainty was used for the 'new' monitor mineral age (if data were sourced from the *ArAR* library).
 - nMonMineral \implies The name of the 'new' monitor mineral selected from the *ArAR* library, 'Custom' if no mineral was selected from the *ArAR* library, or 'Custom from Dataset' if monitor age data were sourced from the active dataset.
 - nMonRef \implies The reference selected from the *ArAR* library for 'new' monitor mineral age data, 'Custom' if no reference was selected from the *ArAR* library, or 'Custom from Dataset' if monitor age data were sourced from the active dataset.

Change Log Entries for 'New' Monitor Mineral Ages (cont'd):

 $M \implies$ The same as t_m in the Symbols for 'Old' and 'New' Monitor Mineral Ages section.

MU \implies The uncertainty in the value of 'M' (i.e., σ_{t_m}).

- nMonModified \implies Indicates whether the values and/or uncertainties for t_{m_o} were edited manually by the user. If 'true,' the values used during calculations may not reflect those stored in the *ArAR* library for the selected reference.
- nMonUwarning \implies Indicates that a relative uncertainty was assumed for the 'new' monitor mineral age ('true'), or that an uncertainty was available in the the *ArAR* library (warning was off, or 'false'). See the *ArAR* Manual for additional details.

Change Log Entries for Calculation Options:

propExtUncerts	\implies	Indicates whether or not ('true'/'false') external sources of un-
		certainty were propagated into the uncertainty of the recalcu-
		lated K-Ar or 40 Ar/ 39 Ar date.
propKdcUncerts	\implies	Indicates whether or not ('true'/'false') external uncertainties
		from the K decay constants were propagated into the uncer-
		tainty of the recalculated K-Ar or 40 Ar/ 39 Ar date.
propKiaUncerts	\implies	Indicates whether or not ('true'/'false') external uncertainties
		from the K isotopic abundance values were propagated into
		the uncertainty of the recalculated K-Ar date.
propMonUncerts	\implies	Indicates whether or not ('true'/'false') external uncertainties
		from the monitor mineral ages were propagated into the un-
		certainty of the recalculated ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ date.
MCEprop	\implies	Indicates that uncertainties were propagated using a Monte
		Carlo approach ('true'), or that uncertainties were propagated
		analytically (MCEprop = 'false').
MCsynthPopSize	\implies	The size of synthetic populations generated for Monte Carlo
		propagation of uncertainties.

5.3 Quantities Used in the ArAR Multiple Intercalibration Log

When an ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ date for an unknown or standard is intercalibrated relative to a primary standard and one or more secondary standards using the *ArAR* Multiple Intercalibration Tool, all

values used during the intercalibration are tracked. The intercalibration summary and full log use alternate plain-text symbols for all quantities as defined below. See the Calculations documentation for details on how intercalibration calculations are performed, and see the Manual for details on exporting the intercalibration logs.

Items in Both the Summary and Full Intercalibration Logs:

- $\sigma = SD \implies$ The standard deviation, i.e., one sigma uncertainty, associated with a quantity. In the exported summary log, all results are expressed with 1σ (1 SD) uncertainties. In the full log, results are shown with 1σ (1 SD) and 2σ (2 SD) uncertainties, and input values are shown with 1σ (1 SD) uncertainties.
- $\begin{aligned} \mathbf{R_i}^{i+1} = \mathbf{R_{-i}}, i+1 &\implies & \text{An intercalibration factor given by } R_i^{i+1} \equiv F_{i+1}/F_i, \text{ where } F_i = \\ & ({}^{40}Ar^*/{}^{39}Ar_K)_i = (e^{\lambda t_i} 1). \text{ In the exported summary log, } \mathbf{R_i}^{i+1} \\ & \text{appears with no superscripts or subscripts, e.g., } \mathbf{R_0}^1 \text{ appears as } \mathbf{R}\mathbf{0}\mathbf{1}. \\ & \text{If a supplemental intercalibration is performed with the mean } F \\ & \text{value of secondary/unknown samples, the intercalibration factor } \\ & R_{primary}^{sample} \text{ appears as } \mathbf{RPS}. \text{ In the exported full log, an intercalibration factor } \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1}. \\ & R_{primary}^{sample} \text{ appears as } \mathbf{R}_i \mathbf{0}\mathbf{1} \\ & R_{primary}^{sample} \mathbf{0}\mathbf{0}\mathbf{1} \\ & R_{primary}^{sample} \mathbf{0}\mathbf{0}\mathbf{1} \\ & R_{primary}^{sample} \mathbf{0}\mathbf{1} \\ & R_{primary}^$
- $\prod \mathbf{R} = \operatorname{BigPiR} \implies \text{The product of all intercalibration factors, i.e., } \prod R \equiv \prod_{i=0}^{n-1} R_i^{i+1},$ where *n* is the total number of 'primary' and 'secondary' standards used to intercalibrate the unknown sample.
 - $MSWD \implies$ The mean squared weighted deviation, a goodness-of-fit statistic that is commonly known as the reduced chi-squared statistic.

Items Only in the Full Intercalibration Log:

The same as λ_{40Ar} in the ⁴⁰K Decay Constants section. Lar The same as λ_{β} in the ⁴⁰K Decay Constants section. Lb \implies The same as λ in the ⁴⁰K Decay Constants section. L \implies KdcModified Indicates whether the values and/or uncertainties for λ_{40Ar} , λ_{β} , \implies and/or λ were edited manually by the user. If 'true,' the values used during calculations may not reflect those stored in the ArAR library for the selected reference. Indicates that relative uncertainties were assumed for the K de-**KdcUwarning** cay contants ('true'), or that uncertainties were available in the the ArAR library (warning was off, or 'false'). See the ArAR Manual

for additional details.

Items Only in the Full Intercalibration Log (cont'd):

- KdcUseCalced \implies Indicates whether the total decay constant, λ , was calculated automatically from the partial decay constants ('true'), or that the user entered a value manually ('false).
 - KdcRef \implies The reference selected from the *ArAR* library for K decay constants. See the *ArAR* Manual for additional details.
 - ptModified \implies Indicates whether the values and/or uncertainties for the age of the 'primary' standard, t_0 , were edited manually by the user. If 'true,' the values used during calculations may not reflect those stored in the *ArAR* library for the selected reference.
 - ptSource \implies The reference selected from the *ArAR* library for the age of the 'primary' standard, or a message describing how t_0 was calculated or specified by the user.
- pKappaModified \implies Indicates whether the values and/or uncertainties for the κ value of the 'primary' standard were edited manually by the user. If 'true,' the values used during calculations may not reflect those stored in the *ArAR* library for the selected reference.
- pKappaSource \implies The reference selected from the *ArAR* library for the κ value of the 'primary' standard, or a message describing how κ was calculated or specified by the user.