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The ArAR software is designed to make “recalculating” previously published (i.e. legacy) K-Ar
and 40Ar/39Ar dates relatively rapid and straightforward. However, it is imperative that the user
fully understands the theory behind the ArAR algorithms and how legacy dates are converted to
account for different values of 40K decay constants, K isotopic abundances, and monitor mineral
ages. In the following sections, I derive the equations employed in the ArAR software, and I
provide notes on how the equations are actually implemented to clarify how values entered in the
ArAR graphical user interface (GUI) are processed. For more details on how to use the ArAR

software, see the Manual. All mathematical symbols employed here for quantities that are are
used in the main ArAR GUI are consistent with those described in the Nomenclature. Additional
symbols are explained as needed.

1 Recalculating Legacy K-Ar Dates

1.1 Theory

The general age equation for the K-Ar system is given by

t =
1
λ

loge

[
λ

λ40Ar

40Ar∗
40K

+1
]
, (1.1)

where t is the age, λ is the total decay constant for 40K , λ40Ar is the partial decay constant for 40K
that accounts for the production of 40Ar (note that the quantity λ/λ40Ar is the inverse of the 40K
decay branching ratio, which describes the fraction of decays of 40K that produce 40Ar*), 40Ar∗/40K

is the measured ratio of radiogenic 40Ar to 40K , and loge[·] is the natural logarithm (Dalrymple
and Lanphere, 1969). Hence, a previously published K-Ar date, to, may be expressed by

to =
1
λo

loge

[
λo

λ40Aro

40Ar∗o
40Ko

+1
]
, (1.2)

where the subscript o denotes the values that were originally used to calculate to.
If the measured values for 40Ar∗o and 40Ko, or the molar ratio 40Ar∗o/

40Ko, are unavailable or too
little information was given to directly calculate a K-Ar date using these values and Eq. (1.1), then

c© 2017, Cameron M. Mercer 2



ArAR – Argon Age Recalculator v.1.00.01 Documentation: Calculations

we may rearrange Eq. (1.2) to obtain

40Ar∗o
40Ko

=
λ40Aro

λo
(exp[λoto]−1). (1.3)

A “new” 40Ar∗/40K ratio may be calculated by multiplying both sides of Eq. (1.3) by the (dimen-
sionless) factor

40Kao
40Ka

,

where
40Kao ≡

40Ko

K
, and 40Ka ≡

40K
K

are the “old” and “new” values for the isotopic abundance of 40K relative to total K, K, respectively.
Thus,

40Ar∗o
40Ko

40Kao
40Ka

=
40Ar∗o
40Ko

40Ko

K
K

40K
=

40Kao
40Ka

λ40Aro

λo
(exp[λoto]−1), (1.4)

and since 40Ar∗o =
40Ar∗ (because the number of atoms of radiogenic 40Ar* that were measured is

invariant), Eq. (1.4) reduces to

40Ar∗
40K

=
40Kao
40Ka

λ40Aro

λo
(exp[λoto]−1). (1.5)

In effect, the 40Ar∗/40K ratio has been “updated” to account for any changes in the values for the
isotopic abundance of 40K . Substituting Eq. (1.5) into Eq. (1.1), we obtain a “new” date

t =
1
λ

loge

[40Kao
40Ka

λ40Aro

λo

λ

λ40Ar
(exp[λoto]−1)+1

]
. (1.6)

This expression fully accounts for changes in the accepted values for the total decay constant and
branching ratio of 40K, as well as changes in the accepted value for the isotopic abundance of 40K.
Note, Eq. (1.6) is a simple generalization of Eq. (2) given by Dalrymple (1979).

1.2 Propagation of Uncertainty

When recalculating K-Ar dates with Eq. (1.6), there are several sources of uncertainty from: (1)
the previously published date, to±σto; (2) the relative isotopic abundance of 40K : (a) 40Kao±σ40Kao

,
and (b) 40Ka±σ40Ka

; and (3) the decay constants for 40K : (a) λ40Aro
±σλ40Aro

, (b) λ40Ar±σλ40Ar
, (c)

λo±σλo , and (d) λ ±σλ . Of these, only σto is an “internal” source of uncertainty, while σ40Kao
,

σ40Ka
, σλ40Aro

, σλ40Ar
, σλo , and σλ are “external” sources of uncertainty. In ArAR, the internal

uncertainties in the legacy data are always propagated into the recalculated K-Ar dates, and the
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user has the option of propagating external uncertainties (from either the K isotopic abundances,
the 40K decay constants, or both). In addition, the user may specify whether error propagation
should be carried out analytically or by the Monte Carlo method. See the Manual for details on
how to select these options.

1.2.1 Analytical Method

If a set of N measured quantities x1,x2, ...,xN with the independent and random uncertainties
σx1,σx2, ...,σxN are used to calculate the value of a function f (x1,x2, ...,xN), then the uncertainty
in f is given by

σ f =

√(
∂ f
∂x1

σx1

)2

+

(
∂ f
∂x2

σx2

)2

+ · · ·+
(

∂ f
∂xN

σxN

)2

. (1.7)

I have employed this general equation (Taylor, 1997, p. 75) in ArAR for propagating uncertainties
analytically during recalculation of legacy K-Ar and 40Ar/39Ar dates. Equation (1.6) is a function
with seven sources of uncertainty, i.e., t = f (to,40Kao,

40Ka,λ40Aro
,λ40Ar,λβo,λβ ). (Recall without

loss of generality that λ ≡ λ40Aro
+λβ .) Therefore, a recalculated K-Ar date has the uncertainty

σt =

[(
∂ t
∂ to

σto

)2

+

(
∂ t

∂ 40Kao
σ40Kao

)2

+

(
∂ t

∂ 40Ka
σ40Ka

)2

+

(
∂ t

∂λ40Aro

σλ40Aro

)2

+

(
∂ t

∂λ40Ar
σλ40Ar

)2

+

(
∂ t

∂λβo

σλβo

)2

+

(
∂ t

∂λβ

σλβ

)2
]1/2

. (1.8)

The partial differential equations from each of the seven terms in Eq. (1.8) are provided below,
and even though I have omitted their derivation here, the interested reader is encouraged to consult
texts such as Boas (2006) or Rogawski (2008) for details on partial differentiation.

∂ t
∂ to

=
αλoeλoto

λ (α(eλoto−1)+1)
, (1.9a)

where α ≡
λ40Aro

λo

λ

λ40Ar

40Kao
40Ka

.

∂ t
∂ 40Kao

=
η

λ (η 40Kao +1)
, (1.9b)

where η ≡
λ40Aro

λo

λ

λ40Ar

(eλoto−1)
40Ka

.

∂ t
∂ 40Ka

=
−η ′

λ 40Ka(η ′+ 40Ka)
, (1.9c)
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where η
′ ≡

λ40Aro

λo

λ

λ40Ar

40Kao(eλoto−1).

∂ t
∂λ40Aro

=
λβo

(
eλ t−1

)
+ γλ 2

40Aro
toeλoto

λ40Aro
λoλeλ t

, (1.9d)

where γ ≡
40Kao
40Ka

λ

λ40Ar
.

∂ t
∂λ40Ar

=−
γ ′λβ +λ 2

40Art

λ 2
40Arλeλ t

, (1.9e)

where γ
′ ≡

40Kao
40Ka

λ40Aro

λo
(eλoto−1).

∂ t
∂λβo

=
ϕtoeλoto− eλ t +1

λoλeλ t
, (1.9f)

where ϕ ≡
40Kao
40Ka

λ

λ40Ar
λ40Aro

.

∂ t
∂λβ

=
ϕ ′e−λ t− t

λ
, (1.9g)

where ϕ
′ ≡

40Kao
40Ka

λ40Aro

λo

(eλoto−1)
λ40Ar

.

In ArAR, Eqs. (1.9) are computed for each recalculated K-Ar date and the results are substituted
into Eq. (1.8). If any external sources of uncertainty are excluded by the user, then the correspond-
ing values (i.e., σ40Kao

, σ40Ka
, σλ40Aro

, σλ40Ar
, σλo , and/or σλ ) are set to zero. This effectively reduces

the number of terms that contribute to the uncertainty of the recalculated K-Ar date (the uncertainty
in to is always propagated).

1.2.2 Monte Carlo Method

In abstract, the Monte Carlo method relies on the repeated sampling of large populations of
values representing distinct quantities to compute a population of results using some predefined
mathematical combination of the sample values. Inferences can then be made on the population of
results using descriptive statistics.

Because Eq. (1.6) is a function of seven variables, synthetic populations are generated for each
variable (to, 40Kao, 40Ka, λ40Aro

, λ40Ar, λβo , and λβ ). Each synthetic population contains pseudo-
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random numbers that are normally distributed1 about a central value (e.g., to) with standard devia-
tion equal to the uncertainty in the central value (e.g., σto). Each synthetic population has the same
size (i.e., the number of values in each population is the same), which can be specified in the main
ArAR GUI (see the Manual for details on how to edit the size of the synthetic populations). If the
uncertainty for a particular variable is set to zero (e.g., if σλ40Ar

= 0 because external uncertainties
from the 40K decay constants are not being propagated), then every member of the synthetic pop-
ulation for that variable will equal the mean value of the variable (e.g., all values in the synthetic
population for λ40Ar will be identically equal to λ40Ar).

Once the seven synthetic populations are generated for to, 40Kao, 40Ka, λ40Aro
, λ40Ar, λβo , and λβ

(with standard devaitions given by σto , σ40Kao
, σ40Ka

, σλ40Aro
, σλ40Ar

, σλβo
, and σλβ

, respectively), a
synthetic ‘results’ population of recalculated K-Ar dates is generated in the following way: (1) a
single value is randomly drawn from each of the seven source populations2; (2) the total decay con-
stants, λo and λ , are calculated; (3) a synthetic recalculated K-Ar date is computed using Eq. (1.6)
and is stored in the results population; (4) steps 1–3 are repeated until the results population has the
size specified in the main ArAR GUI. The results population is normally distributed about a central
value3, and the uncertainty can be inferred simply by calculating the sample standard deviation:

σt =

√
1

N−1

N

∑
i=1

(ti− t̄)2,

where N is the size of the results population, the subscript i represents an individual value in the
population, and

t̄ ≡ 1
N

N

∑
i=1

ti

is the mean of the results population. The value of σt is returned when errors are propagated by
the Monte Carlo method.

1.3 Implementation Notes

If K-Ar dates are entered in units of ka or Ga, they are first converted to units of Ma for
calculations. The 40K decay constants must be entered with units of a−1, and they are converted
to units of Ma−1 for calculations. After the K-Ar dates have been recalculated, they are converted

1The values in each synthetic population are drawn from a Gaussian, or ‘normal,’ limiting distribution.
2Note: every value in the synthetic source populations has an equal probability of being drawn, and the values are

not removed permanently.
3The mean of the results population will be close to the analytically recalculated K-Ar date. As the population size

approaches infinity, the mean value of the results population will converge on the analytical result. Note, however, that
ArAR always returns the analytical result for the recalculated K-Ar date, and only uses the synthetic results population
to infer an uncertainty in the recalculated date.
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back to their original units (i.e., ka or Ga).
If the total 40K decay constant, e.g., λ , is determined automatically from the partial decay

constants, e.g., λ40Ar and λβ , then the uncertainty, e.g., σλ , is determined by analytical error prop-
agation (see Eq. (1.7)).

2 Recalculating Legacy 40Ar/39Ar Dates

2.1 Theory

The general 40Ar/39Ar age equation is

t =
1
λ

loge

[
J
( 40Ar∗

39ArK

)
s
+1
]
, (2.1)

where t is the age, λ is the total decay constant for 40K, (40Ar∗/39ArK)s is the measured ratio
of radiogenic 40Ar to reactor-produced 39Ar in the sample, and J is a dimensionless parameter,
commonly called the irradiation parameter, defined as

J ≡
39K
40K

λ

λ40Ar
∆T
∫

dE φ(E)σ(E), (2.2)

where 39K and 40K are the number of atoms of 39K and 40K, respectively, that are in the monitor
mineral, λ40Ar is the partial decay constant for 40K that accounts for the production of 40Ar by
radioactive decay, ∆T is the duration of the irradiation, φ(E) is the flux of neutrons with energy E,
and σ(E) is the neutron capture cross section at energy E for the 39K(n,p)39Ar reaction (Mitchell,
1968; McDougall and Harrison, 1999). Since it is problematic to accurately determine the fast-
neutron dose that a sample has received (i.e., ∆T , φ(E), and σ(E) are difficult to constrain), it is
common practice to co-irradiate a K-bearing monitor mineral that has a well known age with the
unknown sample. By rearranging Eq. (2.1), the irradiation parameter can be written as

J =
exp[λ tm]−1

(40Ar∗/39ArK)m
, (2.3)

where tm is the age of the monitor mineral, and (40Ar∗/39ArK)m is the measured ratio of radiogenic
40Ar to reactor-produced 39Ar in the monitor mineral.

From Eq. (2.1), a previously published 40Ar/39Ar date, to, may be expressed by

to =
1
λo

loge

[
Jo

( 40Ar∗
39ArK

)
s
+1
]
, (2.4)
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where the subscript o denotes the values that were originally used to calculate to. Note that the
measured quantity (40Ar∗/39ArK)s is invariant, since any change in the decay constants or isotopic
abundance values for K will not change the number of atoms of 39Ar and 40Ar that were counted
during the original mass spectrometry. Thus, we simply need to express the “old” Jo value in terms
of a “new” J, solve Eq. (2.4) for (40Ar/39ArK)s, and substitute the result into the general 40Ar/39Ar
age equation, Eq. (2.1).

If the sample was co-irradiated with a K-bearing monitor mineral, and if the monitor age, tmo ,
was reported along with the legacy date, to, then we may adopt Eq. (2.3) to write

Jo =
exp[λotmo]−1
(40Ar∗/39ArK)m

. (2.5)

Note again that the measured quantity (40Ar∗/39ArK)m is invariant with respect to changes in ac-
cepted values for the decay constants or isotopic abundance values of K. Solving Eq. (2.3) for the
(40Ar∗/39ArK)m and substituting the result into Eq. (2.5), we obtain

Jo = J
exp[λotmo]−1
exp[λ tm]−1

. (2.6)

We may then substitute Eq. (2.6) into Eq. (2.4) and solve for (40Ar/39ArK)s to obtain( 40Ar∗
39ArK

)
s
=

exp[λ tm]−1
exp[λotmo]−1

exp[λoto]−1
J

. (2.7)

Notice that there are now two separate references to the age of the monitor mineral, namely tmo and
tm. While the monitor mineral that was used in the original analysis certainly has not changed, the
accepted value for the age of that monitor mineral may have changed (e.g., due to “new” values
for the decay constants and isotopic abundances of K, or from more recent experiments), and the
revised value must be accounted for. Finally, by substituting Eq. (2.7) into Eq. (2.1), we arrive at
an expression for the “new” date

t =
1
λ

loge

[
exp[λ tm]−1

exp[λotmo]−1
(exp[λoto]−1)+1

]
. (2.8)

Note that the irradiation parameter, J, is absent from Eq. (2.8) since it was in the numerator in
Eq. (2.1) and in the denominator in Eq. (2.7), causing them to cancel to unity. Thus, it is not
necessary to know the J value in order to recalculate a legacy 40Ar/39Ar date! Only the age of the
monitor mineral used to calculate the legacy date is required to determine a “new” 40Ar/39Ar date.
If the monitor age was not reported with the legacy date, but the original irradiation parameter, Jo,
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and the quantity (40Ar∗/39ArK)m were reported, then the original value for the monitor age may be
calculated by rearranging Eq. (2.5) to write

tmo =
1
λo

loge

[
Jo

( 40Ar∗
39ArK

)
m
+1
]
. (2.9)

2.2 Equivalency with the K-Ar Recalculation Equation, Eq. (1.6)

Adopting Eq. (2.5) as the starting expression for Jo when recalculating a legacy 40Ar/39Ar date
is an arbitrary choice beyond the fact that it is common practice for researchers to use monitor
minerals to calculate the irradiation parameter. An equivalent approach is to adopt an expression
with the form of Eq. (2.2) for the irradiation parameter

Jo =
39K
40Ko

λo

λ40Aro

∆T
∫

dE φ(E)σ(E). (2.10)

Notice that I have not added the subscript o to 39K. This is because the production of 39ArK by the
39K(n,p)39Ar reaction during neutron irradiation of the monitor mineral is described by

39ArK = 39K∆T
∫

dE φ(E)σ(E), (2.11)

and since the measured quantity (40Ar∗/39ArK)m is invariant, then the right-hand side of this ex-
pression is also invariant. In other words, the number of atoms of 39Ar that were produced in
the monitor mineral during the irradiation and subsequently counted during mass spectrometry is
independent of any changes we may consider for the values of the decay constants or isotopic abun-
dances of K. Therefore, we can solve Eq. (2.2) for the invariant quantity 39K∆T

∫
dE φ(E)σ(E)

and substitute it into Eq. (2.10) to obtain

Jo = J
40K
40Ko

λ40Ar
λ

λo

λ40Aro

. (2.12)

Note that the quantities 40K and 40Ko as I have used them are, in the strictest sense, referring to
the number of atoms of 40K that are present in the monitor mineral. These quantities may be
re-expressed relative to the total K, K, of the sample by multiplying both sides of the equation
by 1, where on the right-hand side we take 1 = K/K, and the quotient (40KK)/(40KoK) becomes
40Ka/

40Kao, i.e., the ratio of the “new” isotopic abundance value to the ‘old’ isotopic abundance
value of 40K relative to total K. Hence,

Jo = J
40Ka

40Kao

λ40Ar
λ

λo

λ40Aro

, (2.13)
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and, in analogy to the final steps we took to arrive at Eq. (2.8), we can substitute Eq. (2.13) into
Eq. (2.4) to get an expression for the invariant quantity (40Ar/39ArK)s, and then place that result
into the general 40Ar/39Ar age equation (Eq. (2.1)) to obtain an expression for the ‘new’ date

t =
1
λ

loge

[40Kao
40Ka

λ40Aro

λo

λ

λ40Ar
(exp[λoto]−1)+1

]
. (2.14)

This is identical to the K-Ar age recalculation equation (Eq. (1.6)), and implies that

40Kao
40Ka

λ40Aro

λo

λ

λ40Ar
=

exp[λ tm]−1
exp[λotmo]−1

. (2.15)

Thus, Eq. (1.6) and Eq. (2.8) are effectively equivalent, and allow legacy K-Ar and 40Ar/39Ar dates
to be recalculated to adjust for changes in the accepted values for the decay constants of 40K and
the relative abundances of 39K, 40K , and 41K. Note that, in the strictest sense, this equivalency
only applies in the case where changes in the accepted values for the ages of monitor minerals are
due solely to updates in the 40K decay constants and K isotopic abundances. In the event that the
accepted values for monitor mineral ages change by other means (e.g., by improved or additional
measurements of a particular monitor), then any 40Ar/39Ar dates that rely on those monitors should
be recalculated using Eq. (2.8) rather than Eq. (1.6).

2.3 Propagation of Uncertainty

When recalculating 40Ar/39Ar dates with Eq. (2.8), there are several sources of uncertainty
from: (1) the previously published date, to±σto ; (2) the decay constants for 40K : (a) λo±σλo ,
and (b) λ ±σλ ; and (3) the monitor mineral ages, (a) tmo ±σtmo

, and (b) tm±σtm . Of these, only
σto is an “internal” source of uncertainty, while σλo , σλ , σtmo

, and σtm are “external” sources of
uncertainty. In ArAR, the internal uncertainties in the legacy data are always propagated into the
recalculated K-Ar dates, and the user has the option of propagating external uncertainties (from
either the 40K decay constants, monitor mineral ages, or both). In addition, the user may specify
whether error propagation should be carried out analytically or by the Monte Carlo method. See
the Manual for details on how to select these options.

2.3.1 Analytical Method

Uncertainties are propagated analytically using Eq. (1.7), the general error propagation equa-
tion (Taylor, 1997, p. 75). Equation (2.8) is a function with five sources of uncertainty, i.e.,
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t = f (to,λo,λ , tmo, tm), and therefore a recalculated 40Ar/39Ar date has the uncertainty

σt =

[(
∂ f
∂ to

σto

)2

+

(
∂ f
∂λo

σλo

)2

+

(
∂ f
∂λ

σλ

)2

+

(
∂ f

∂ tmo

σtmo

)2

+

(
∂ f
∂ tm

σtm

)2]1/2

. (2.16)

The partial differential equations from each of the five terms in Eq. (2.16) are provided below, and
even though I have omitted their derivation here, the interested reader is encouraged to consult
texts such as Boas (2006) or Rogawski (2008) for details on partial differentiation.

∂ t
∂ to

=
αλoeλoto

λ (α(eλoto−1)+1)
, (2.17a)

where α ≡ eλ tm−1
eλotmo −1

.

∂ t
∂λo

=
ηtoeλoto− tmoeλotmo

(
eλ t−1

)
λeλ t(eλotmo −1)

, (2.17b)

where η ≡ eλ tm−1.

∂ t
∂λ

=
η ′tmeλ tm− teλ t

λeλ t
, (2.17c)

where η
′ ≡ eλoto−1

eλotmo −1
.

∂ t
∂ tmo

=
−γ λoeλotmo

λ (γ + eλotmo −1)(eλotmo −1)
, (2.17d)

where γ ≡ (eλ tm−1)(eλoto−1).

∂ t
∂ tm

=
γ ′eλ tm

γ ′(eλ tm−1)+1
, (2.17e)

where γ
′ ≡ eλoto−1

eλotmo −1
.

In ArAR, Eqs. (2.17) are computed for each recalculated 40Ar/39Ar date and the results are
substituted into Eq. (2.16). If any external sources of uncertainty are excluded by the user, then the
corresponding values (i.e., σλo , σλ , σtmo

, and/or σtm) are set to zero. This effectively reduces the
number of terms that contribute to the uncertainty of the recalculated 40Ar/39Ar date (the uncer-
tainty in to is always propagated).
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2.3.2 Monte Carlo Method

In abstract, the Monte Carlo method relies on the repeated sampling of large populations of
values representing distinct quantities to compute a population of results using some predefined
mathematical combination of the sample values. Inferences can then be made on the population of
results using descriptive statistics.

Because Eq. (2.8) is a function of five variables, synthetic populations are generated for each
variable (to, λo, λ , tmo , and tm). Each synthetic population contains pseudo-random numbers that
are normally distributed4 about a central value (e.g., to) with standard deviation equal to the uncer-
tainty in the central value (e.g., σto). Each synthetic population has the same size (i.e., the number
of values in each population is the same), which can be specified in the main ArAR GUI (see the
Manual for details on how to edit the size of the synthetic populations). If the uncertainty for a
particular variable is set to zero (e.g., if σλ = 0 because external uncertainties from the 40K decay
constants are not being propagated), then every member of the synthetic population for that vari-
able will equal the mean value of the variable (e.g., all values in the synthetic population for λ will
be identically equal to λ ).

Once the five synthetic populations are generated for to, λo, λ , tmo , and tm (with standard de-
vaitions given by σto , σλo , σλ , σtmo , and σtm , respectively), a synthetic ‘results’ population of
recalculated 40Ar/39Ar dates is generated in the following way: (1) a single value is randomly
drawn from each of the five source populations5; (2) a synthetic recalculated 40Ar/39Ar date is
computed using Eq. (2.8) and is stored in the results population; (3) steps 1 and 2 are repeated until
the results population has the size specified in the main ArAR GUI. The results population is nor-
mally distributed about a central value6, and the uncertainty can be inferred simply by calculating
the sample standard deviation:

σt =

√
1

N−1

N

∑
i=1

(ti− t̄)2,

where N is the size of the results population, the subscript i represents an individual value in the
population, and

t̄ ≡ 1
N

N

∑
i=1

ti

is the mean of the results population. The value of σt is returned when errors are propagated by

4The values in each synthetic population are drawn from a Gaussian, or ‘normal,’ limiting distribution.
5Note: every value in the synthetic source populations has an equal probability of being drawn, and the values are

not removed permanently.
6The mean of the results population will be close to the analytically recalculated 40Ar/39Ar date. As the population

size approaches infinity, the mean value of the results population will converge on the analytical result. Note, however,
that ArAR always returns the analytical result for the recalculated 40Ar/39Ar date, and only uses the synthetic results
population to infer an uncertainty in the recalculated date.
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the Monte Carlo method.

2.4 Implementation Notes

If 40Ar/39Ar dates are entered in units of ka or Ga, they are first converted to units of Ma for
calculations. The 40K decay constants must be entered with units of a−1, and they are converted
to units of Ma−1 for calculations. After the 40Ar/39Ar dates have been recalculated, they are
converted back to their original units (i.e., ka or Ga).

If the total 40K decay constant, e.g., λ , is determined automatically from the partial decay
constants, e.g., λ40Ar and λβ , then the uncertainty, e.g., σλ , is determined by analytical error prop-
agation (see Eq. (1.7)).

3 Intercalibration with Multiple Coirradiated Standards

3.1 Intercalibration Methods

A K-bearing mineral may be intercalibrated relative to a ‘primary’ standard and an arbitrary
number of secondary standards with known K-Ar or 40Ar/39Ar ages using the methods of Karner
and Renne (1998) and Renne et al. (1998). For convenience, we reproduce Eqs. 1–3 (Eqs. (3.1)
a–c) and Eq. 5 (Eq. (3.2)) from Renne et al. (1998) below. Note that these equations only apply for
samples that have been coirradiated, i.e., all the grains were simultaneously irradiated in the same
palette. The intercalibrated age, tu, of an ‘unknown’ sample relative to a ‘primary’ standard with a
known K-Ar age7 and zero or more secondary standards is given by:

tu =
1
λ

loge

[
λ

λ40Ar
κ

n−1

∏
i=0

Ri+1
i +1

]
, (3.1a)

where

κ ≡
(40Ar∗

40K

)
i=0

(3.1b)

is known for the ‘primary’ standard (i = 0), and

Ri+1
i ≡ Fi+1

Fi
=

( 40Ar∗
39ArK

)
i+1( 40Ar∗

39ArK

)
i

=
exp[λ ti+1]−1
exp[λ ti]−1

. (3.1c)

7In a more fundamental sense, the ‘primary’ standard must have a known 40Ar∗/K ratio, where K is the total
potassium concentration of the sample. The 40Ar*/40K ratio and K-Ar age of the standard are then determined by
choosing sets of values for the isotopic abundances of K and the 40K decay constants, respectively.
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The variable n is the total number of ‘primary’ and ‘secondary’ standards used to intercalibrate
the unknown sample. For i = 0, R1

0 = F1/F0 represents the ratio of the F value of the first ‘sec-
ondary’ standard to that of the ‘primary’ standard. For values of i in the range 1≤ i < n−1, Ri+1

i

represents the ratio of F values between successive ‘secondary’ standards. For i = n− 1, Rn
n−1 is

the ratio of the F value for the unknown sample to that of the last ‘secondary’ standard.
If the age of the ‘primary’ standard, t0, was determined by some other means, the equivalent

expression to Eq. (3.1a) is:

tu =
1
λ

loge

[
(exp[λ t0]−1)

n−1

∏
i=0

Ri+1
i +1

]
, (3.2)

where Ri+1
i is the same as Eq. (3.1c). Note that Eqs. (3.1) a-c and Eq. (3.2) all use a single value

for the total 40K decay constant λ , and that calculating Eq. (3.1b) requires an assumption about
the relative isotopic abundances of K. Suppose that published isotopic data exist for coirradiated
standards but the accepted values for λ (i.e., λ40Ar and λβ ) and/or 40Ka have changed. A ‘new’
value for κ (Eq. (3.1b)) can be determined using

κ = κo

40Ka
40Kao

,

where κo is the originally published value, and then Eqs. (3.1) a–c can be used to determine a
new intercalibrated age using κ and the new decay constants. Finally, note that, for n = 1 and
Ri+1

i = (exp[λ ti+1]−1)/(exp[λ ti]−1), Eq. (3.2) reduces to a form identical to Eq. (2.8). The only
difference in Eq. (2.8) is that we have allowed the 40K decay constants and monitor mineral age in
the R factor to represent the ‘old’ values used to calculate the legacy 40Ar/39Ar date, to.

When there are number of replicate analyses for a single standard, S, that is being intercali-
brated against a primary standard, P, using Eqs. (3.1) a–c, researchers have commonly calculated
some form of a mean FS value from the replicate FSi = (40Ar∗/39ArK)Si ratios. Some have calcu-
lated a simple arithmetic mean and used either the sample standard deviation (σFS , e.g., Nomade
et al., 2005) or the standard deviation of the mean (σFS/

√
N, e.g., Renne et al., 1998; Jourdan et al.,

2006) as an estimate of the uncertainty, while others calculated the inverse-variance weighted mean
and standard deviation of the mean (e.g., Spell and McDougall, 2003). Once a mean FS value is
determined, a single RS

P = FS/FP value can be determined and Eqs. (3.1) a–c may be used (with
n = 1) to determine an intercalibrated age of the standard S. All three methods for determining the
mean F value and its associated uncertainty for a single standard are available as supplementary
intercalibration options in ArAR. See section 3.2 for details on the propagation of uncertainties for
multiple intercalibration, and see sections 3.5 and 3.6 for details on supplemental intercalibration
calculations.
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3.2 Propagation of Uncertainty

When intercalibrating a sample to multiple ‘primary’ and ‘secondary’ standards using Eqs. (3.1)
a–c, there are several sources of uncertainty from: (1) the 40K decay constants: (a) λ40Ar±σλ40Ar

,
and (b) λβ ±σλβ

; (2) the value of κ (Eq. (3.1b)) for the ‘primary’ standard: κ ±σκ ; and (3) the
value(s) of Ri+1

i (Eq. (3.1c)) between the various standards and the unknown sample: Ri+1
i ±σRi+1

i
.

When intercalibrating a sample using Eq. (3.2), the sources of uncertainty are: (1) the 40K total
decay constant: λ ±σλ ; (2) the age of the ‘primary’ standard: t0±σt0; and (3) the value(s) of Ri+1

i

(as above). Of these, σκ , σt0 , and σRi+1
i

are ‘internal’ sources of uncertainty, while σλ , σλ40Ar
, and

σλβ
are ‘external’ sources of uncertainty. In ArAR , the internal uncertainties in the legacy data are

always propagated into the intercalibrated standard age, and the user has the option of propagating
external uncertainties (from the 40K decay constants). In addition, the user may specify whether
error propagation should be carried out analytically or by the Monte Carlo method.

3.3 Analytical Approach

Karner and Renne (1998) and Renne et al. (1998) provided analytical equations for the propa-
gation of uncertainties through Eqs. (3.1) a–c and Eq. (3.2). These equations are reproduced below
term by term, and were originally derived using the same general error propagation equation for
independent and random quantities (Eq. (1.7)) that we have applied to Eq. (1.6) and Eq. (2.8).

Equation (3.1a) is a function with four or more sources of uncertainty, depending on how many
standards are used in the intercalibration. For example, if an unknown sample is intercalibrated
relative to a single primary standard (i.e., n = 1), then tu = f (λ40Ar,λβ ,κ,R1

0). If an unknown
sample is instead intercalibrated relative to a primary monitor and two secondary standards (i.e.,
n = 3), then tu = f (λ40Ar,λβ ,κ,R1

0,R
2
1,R

3
2). In general, an 40Ar/39Ar date intercalibrated using

Eq. (3.1a) has the uncertainty

σtu =

[(
∂ t

∂λ40Ar
σλ40Ar

)2

+

(
∂ t

∂λβ

σλβ

)2

+

(
∂ t
∂κ

σκ

)2

+
n−1

∑
j=0

(
∂ t

∂R j+1
j

σR j+1
j

)2]1/2

. (3.3)

The partial differential equations from each of the terms in Eq. (3.3) are provided below (Karner
and Renne, 1998; Renne et al., 1998).

∂ tu
∂λ40Ar

=− 1
λ

tu +

λβ κ

n−1

∏
i=0

Ri+1
i

λ 2
40Are

λ tu

 , (3.4a)
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∂ tu
∂λβ

=
1
λ

−tu +

κ

n−1

∏
i=0

Ri+1
i

λ40Ar +λκ

n−1

∏
i=0

Ri+1
i

 , (3.4b)

∂ tu
∂κ

=

n−1

∏
i=0

Ri+1
i

λ40Ar +λκ

n−1

∏
i=0

Ri+1
i

, (3.4c)

∂ tu
∂R j+1

j

=

κ

n−1

∏
i=0

Ri+1
i

R j+1
j

(
λ40Ar +λκ

n−1

∏
i=0

Ri+1
i

) . (3.4d)

Note the use of two separate indexes, i and j, in Eq. (3.4d).
Equation (3.2) is a function with three or more sources of uncertainty, again depending on

the number of standards that are used in the intercalibration, i.e., tu = f (λ , t0,R1
0,R

2
1, . . . ,R

i+1
i ) for

i < n. In general, an 40Ar/39Ar date intercalibrated using Eq. (3.2) has the uncertainty

σtu =

[(
∂ t
∂λ

σλ

)2

+

(
∂ t
∂ t0

σt0

)2

+
n−1

∑
j=0

(
∂ t

∂R j+1
j

σR j+1
j

)2]1/2

. (3.5)

The partial differential equations from each of the terms in Eq. (3.5) are provided below (Renne
et al., 1998).

∂ tu
∂λ

=
1
λ

(
−tu + t0eλ (t0−tu)

n−1

∏
i=0

Ri+1
i

)
, (3.6a)

∂ tu
∂ t0

= eλ (t0−tu)
n−1

∏
i=0

Ri+1
i , (3.6b)

∂ tu
∂R j+1

j

=

(eλ t0−1)
n−1

∏
i=0

Ri+1
i

λeλ tuR j+1
j

. (3.6c)

Note the use of two separate indexes, i and j, in Eq. (3.6c).
In ArAR , Eqs. (3.4) are computed and substituted into Eq. (3.3), or Eqs. (3.6) are computed

and substituted into Eq. (3.5), depending on the intercalibration algorithm selected by the user. If
any external sources of uncertainty are excluded by the user, then the corresponding values (σλ40Ar

,
and σλβ

in Eq. (3.3); σλ in Eq. (3.5)) are set to zero. This effectively reduces the number of terms
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that contribute to the uncertainty of the intercalibrated 40Ar/39Ar date (the uncertainties in σκ , σt0 ,
and R j+1

j are always propagated).
The uncertainty in R j+1

j can be determined using the general error propagation equation, Eq. (1.7).
In case (A), where

R j+1
j =

( 40Ar∗
39ArK

)
j+1( 40Ar∗

39ArK

)
j

=
Fj+1

Fj
, (3.7)

the uncertainty in the R j+1
j is given by

σR j+1
j

= R j+1
j

[(
σFj+1

Fj+1

)2

+

(
σFj

Fj

)2
]1/2

. (3.8)

In case (B), where

R j+1
j =

exp[λ t j+1]−1
exp[λ t j]−1

=
Fj+1

Fj
, (3.9)

the uncertainty in the R j+1
j is given by

σR j+1
j

=

(∂R j+1
j

∂λ
σλ

)2

+

(
∂R j+1

j

∂ t j+1
σt j+1

)2

+

(
∂R j+1

j

∂ t j
σt j

)21/2

, (3.10)

where the partial differential equations are

∂R j+1
j

∂λ
=

t j+1eλ t j+1− t jeλ t jR j+1
j

eλ t j −1
, (3.11a)

∂R j+1
j

∂ t j+1
=

λeλ t j+1

eλ t j −1
, (3.11b)

∂R j+1
j

∂ t j
=−

λeλ t jR j+1
j

eλ t j −1
. (3.11c)

3.4 Monte Carlo Approach

When a sample is intercalibrated relative to a primary standard and one or more secondary
standards, the uncertainties in each ratio Ri+1

i (for 0 ≤ i < n) are determined first. In case (A),
where Eq. (3.7) applies, synthetic populations of pseudo-random numbers are generated for the
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quantities Fi = (40Ar∗/39ArK)i and Fi+1 = (40Ar∗/39ArK)i+1, which are normally distributed8 about
a central value (e.g., Fi) with standard deviation equal to the uncertainty in the central value (e.g.,
σFi). Each synthetic population has the same size (i.e., the number of values in each population
is the same), which can be specified in the ArAR Multiple Intercalibration Tool window. Next,
a synthetic ‘results’ population of Ri+1

i values, where (Ri+1
i ) j = (Fi+1) j/(Fi) j, is generated in

the following way: (1) a single value (with index j) is randomly drawn from each of the source
populations9; (2) a synthetic (Ri+1

i ) j value is computed using Eq. (3.7) and is stored in the results
population; (3) steps 1 and 2 are repeated until the results population has the size specified in the
ArAR Multiple Intercalibration Tool window. The results population is normally distributed about
a central value10, and the uncertainty can be inferred simply by calculating the sample standard
deviation:

σRi+1
i

=

√√√√ 1
N−1

N

∑
j=1

((
Ri+1

i
)

j−Ri+1
i

)2
,

where N is the size of the results population, the subscript i represents an individual value in the
population, and

Ri+1
i ≡ 1

N

N

∑
j=1

(
Ri+1

i
)

j

is the mean of the results population. The uncertainties for each R value, σRi+1
i

, are reported

for convenience, and the synthetic populations for each R value, Ri+1
i , are used again in later

calculations when errors are propagated by the Monte Carlo method for multiple intercalibration.
In case (B), where Eq. (3.9) applies, synthetic populations of pseudo-random numbers are

generated for the quantities λ , ti, and ti+1, which are normally distributed11 about a central value
(e.g., λ ) with standard deviation equal to the uncertainty in the central value (e.g., σλ ). Each
synthetic population has the same size (i.e., the number of values in each population is the same),
which can be specified in the ArAR Multiple Intercalibration Tool window. Next, intermediate
synthetic populations are generated (separately) for the quantities Fi and Fi+1 in the following
general way: (1) a single value (with index j) is randomly drawn from each of the appropriate
source populations12; (2) a synthetic (Fi) j =(exp[λ (ti) j]−1) or (Fi+1) j =(exp[λ (ti+1) j]−1) value

8The values in each synthetic population are drawn from a Gaussian, or ‘normal,’ limiting distribution.
9Note: every value in the synthetic source populations has an equal probability of being drawn, and the values are

not removed permanently.
10The mean of the results population will be close to the analytically determined R value, Ri+1

i . As the population
size approaches infinity, the mean value of the results population will converge on the analytical result. Note, however,
that ArAR always returns the analytical result for the Ri+1

i , and only uses the synthetic results population to infer an
uncertainty, σRi+1

i
.

11The values in each synthetic population are drawn from a Gaussian, or ‘normal,’ limiting distribution.
12Note: every value in the synthetic source populations has an equal probability of being drawn, and the values are

not removed permanently.
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is computed and is stored in the appropriate intermediate population; (3) steps 1 and 2 are repeated
until the intermediate populations have the size specified in the ArAR Multiple Intercalibration
Tool window. Next, a synthetic ‘results’ population of Ri+1

i values is generated in the following
way: (1) a single value (with index j) is randomly drawn from each of the source populations
(for Fi and Fi+1)13; (2) a synthetic value is computed by taking the ratio (Ri+1

i ) j = (Fi+1) j/(Fi) j,
consistent with Eq. (3.9), and is stored in the results population; (3) steps 1 and 2 are repeated until
the results population has the size specified in the ArAR Multiple Intercalibration Tool window.
The results population is normally distributed about a central value14, and the uncertainty can be
inferred simply by calculating the sample standard deviation:

σRi+1
i

=

√√√√ 1
N−1

N

∑
j=1

((
Ri+1

i
)

j−Ri+1
i

)2
,

where N is the size of the results population, the subscript i represents an individual value in the
population, and

Ri+1
i ≡ 1

N

N

∑
j=1

(
Ri+1

i
)

j

is the mean of the results population. The uncertainties for each R value, σRi+1
i

, are reported

for convenience, and the synthetic populations for each R value, Ri+1
i , are used again in later

calculations when errors are propagated by the Monte Carlo method for multiple intercalibration.
Once synthetic populations have been generated for each Ri+1

i (for 0 ≤ i < n), synthetic pop-
ulations are also generated for each additional quantity in either Eqs. (3.1) (i.e., λ40Ar, λ , κ) or
Eq. (3.2) (i.e., λ , t0), depending on the algorithm selected by the end user. The total number of
synthetic populations depends on the total number of standards (n) that are being used to calibrate
the unknown sample. Each synthetic population contains pseudo-random numbers that are nor-
mally distributed about a central value (e.g., λ ) with standard deviation equal to the uncertainty in
the central value (e.g., σλ ). Each synthetic population has the same size (i.e., the number of values
in each population is the same), which can be specified in the ArAR Multiple Intercalibration Tool
window. If the uncertainty for a particular variable is set to zero (e.g., if σλ = 0 because external
uncertainties from the 40K decay constants are not being propagated), then every member of the
synthetic population for that variable will equal the mean value of the variable (e.g., all values in

13Note: every value in the synthetic source populations has an equal probability of being drawn, and the values are
not removed permanently.

14The mean of the results population will be close to the analytically determined R value, Ri+1
i . As the population

size approaches infinity, the mean value of the results population will converge on the analytical result. Note, however,
that ArAR always returns the analytical result for the Ri+1

i , and only uses the synthetic results population to infer an
uncertainty, σRi+1

i
.

c© 2017, Cameron M. Mercer 19



ArAR – Argon Age Recalculator v.1.00.01 Documentation: Calculations

the synthetic population for λ will be identically equal to λ ).
Once the synthetic synthetic populations are generated for the appropriate quantities in Eqs. (3.1)

or Eq. (3.2), a synthetic ‘results’ population of intercalibrated monitor dates is generated in the fol-
lowing way: (1) a single value is randomly drawn from each of the source populations15; (2) a
synthetic intercalibrated 40Ar/39Ar date is computed using either Eqs. (3.1) or Eq. (3.2) and is
stored in the results population; (3) steps 1 and 2 are repeated until the results population has the
size specified in the ArAR Multiple Intercalibration Tool window. The results population is nor-
mally distributed about a central value16, and the uncertainty can be inferred simply by calculating
the sample standard deviation:

σtu =

√
1

N−1

N

∑
i=1

(tui− tu)
2,

where N is the size of the results population, the subscript i represents an individual value in the
population, and

tu ≡
1
N

N

∑
i=1

tui

is the mean of the results population. The value of σtu is returned when errors are propagated by
the Monte Carlo method for multiple intercalibration.

3.5 Supplemental Intercalibrations Using the Mean F Value

For a single standard, S, replicate FSi = (40Ar∗/39ArK)Si values may be entered in the ArAR

Multiple Intercalibration Tool Window. The user may choose to perform a supplemental inter-
calibration using a mean FS value to determine a single RS

P = FS/FP value relative to the primary
standard, P. Either an arithmetic mean or an inverse-variance weighted mean FS may be deter-
mined. The arithmetic mean is calculated as

FS =
1
N

N

∑
i=1

FSi, (3.12)

15Note: every value in the synthetic source populations has an equal probability of being drawn, and the values are
not removed permanently.

16The mean of the results population will be close to the analytically intercalibrated 40Ar/39Ar date. As the popu-
lation size approaches infinity, the mean value of the results population will converge on the analytical result. Note,
however, that ArAR always returns the analytical result for the intercalibrated 40Ar/39Ar date, and only uses the syn-
thetic results population to infer an uncertainty in the intercalibrated date.
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where N is the number of replicates, and the uncertainty can either be determined as the sample
standard deviation

σFS =

√
1

N−1

N

∑
i=1

(
FSi−FS

)2 (3.13)

or as the standard deviation of the mean

σFS
= σFS/

√
N. (3.14)

The inverse-variance weighted mean is calculated as

(
FS
)

w =

N

∑
i=1

ωiFSi

N

∑
i=1

ωi

, (3.15)

where ωi ≡ 1/σ2
FSi

, and the standard deviation of the mean is determined as

(
σFS

)
w
=

1√
N

∑
i=1

ωi

. (3.16)

Once a mean FS value, FS, is determined, the MSWD, also known as the reduced chi-squared
statistic, is calculated as follows:

MSWD≡ 1
N−1

N

∑
i=1

(FSi−FS)
2

σ2
FSi

. (3.17)

The MSWD will have a value near unity if the value of FS fits the population of FSi values well. If
MSWD> 1+2 ·

√
2/(N−1), then it is possible that the uncertainties σFSi

were underestimated and
do not adequately account for the scatter of the FSi values about the mean, FS. If the user feels that
this is indeed the case, they have the option to have the ArAR Multiple Intercalibration Tool expand
the uncertainty in FS, i.e., σFS

, by the
√

MSWD. This expansion inflates the σFSi
values such that

the MSWD becomes identically equal to unity, and therefore serves as a method to account for
excess dispersion in the FSi values. Note: this should not necessarily be used mechanistically; it is
important that the researcher critically evaluate whether this error expansion technique is warranted
in each case where MSWD > 1+ 2 ·

√
2/(N−1). For more information about the MSWD, the

interested reader is referred to Wendt and Carl (1991).
Once the mean FS value, FS, and its associated uncertainty, σFS

, are determined, a single
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intercalibration factor is calculated using

RS
P = FS/FP, (3.18)

and the associated uncertainty is calculated using

σRS
P
= RS

P

[(
σFS

FS

)2

+

(
σFP

FP

)2
]
. (3.19)

Finally, Eqs. (3.1) a–c are used (with n = 1) to determine an intercalibrated age of the standard S.
Error propagation occurs as described in sections 3.3 and 3.4.

3.6 Calculated Values of κ and t0 for the Primary Monitor

By default, the user must supply the value of either κ or t0 for the ‘primary’ standard when
using Eqs. (3.1) a-c or Eq. (3.2), respectively, to intercalibrate an unknown in the ArAR Multiple
Intercalibration Tool. However, the user may optionally have ArAR determine: (1) κ from t0 before
employing the result in Eqs. (3.1) a-c, or (2) t0 from κ before employing the result in Eq. (3.2).
The following sections describe these calculations and the associated propagation of uncertainties.

3.6.1 Calculating κ from t0

The K-Ar age of the ‘primary’ standard is given by

t0 =
1
λ

loge

[
λ

λ40Ar
κ +1

]
, (3.20)

where κ ≡ 40Ar∗/40K. Solving for κ , we obtain

κ =
λ40Ar

λ

(
eλ t0−1

)
. (3.21)

To calculate the uncertainty, σκ , it is useful to rewrite Eq. (3.21) as

κ =
λ40Ar

λ40Ar +λβ

(
e(λ40Ar+λβ )t0−1

)
, (3.22)

since λ ≡ λ40Ar +λβ . Then, applying the general error propagation equation (Eq. (1.7)), the uncer-
tainty in κ is given by

σκ =

[(
∂κ

∂λ40Ar
σλ40Ar

)2

+

(
∂κ

∂λβ

σλβ

)2

+

(
∂κ

∂ t0
σt0

)2]1/2

, (3.23)
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where the partial differential equations are

∂κ

∂λ40Ar
=

(λβ +λ40Arλ t0)eλ t0−λβ

λ 2 , (3.24a)

∂κ

∂λβ

=
λ40Ar
λ 2

[
1+(λ t0−1)eλ t0

]
, (3.24b)

∂κ

∂ t0
= λ40Are

λ t0. (3.24c)

In ArAR, Eqs. (3.24) are computed and the results are substituted into Eq. (3.23). If any external
sources of uncertainty are excluded by the user, then the corresponding values (i.e., σλ40Ar

and σλβ
)

are set to zero. This effectively reduces the number of terms that contribute to the uncertainty of κ

(the uncertainty in t0 is always propagated).

3.6.2 Calculating t0 from κ

To determine the value of t0 from κ , we simply employ Eq. (3.20). To calculate the uncertainty,
σt0 , it is useful to rewrite Eq. (3.20) as

t0 =
1

λ40Ar +λβ

loge

[
λ40Ar +λβ

λ40Ar
κ +1

]
, (3.25)

since λ ≡ λ40Ar +λβ . Then, applying the general error propagation equation (Eq. (1.7)), the uncer-
tainty in t0 is given by

σt0 =

[(
∂ t0

∂λ40Ar
σλ40Ar

)2

+

(
∂ t0
∂λβ

σλβ

)2

+

(
∂ t0
∂κ

σκ

)2]1/2

, (3.26)

where the partial differential equations are

∂ t0
∂λ40Ar

=− 1
λ

(
λβ κ

λ40Arλκ +λ40Ar
+ t0

)
, (3.27a)

∂ t0
∂λβ

=
1
λ

(
κ

λκ +λ40Ar
− t0

)
, (3.27b)

∂ t0
∂κ

=
1

λκ +λ40Ar
. (3.27c)
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In ArAR, Eqs. (3.27) are computed and the results are substituted into Eq. (3.26). If any external
sources of uncertainty are excluded by the user, then the corresponding values (i.e., σλ40Ar

and σλβ
)

are set to zero. This effectively reduces the number of terms that contribute to the uncertainty of t0
(the uncertainty in κ is always propagated).

Appendix

A Derivation of the K-Ar and 40Ar/39Ar Age Equations

A.1 Basic Theory

Unstable nuclides spontaneously transform to other nuclides, either stable or unstable, by the
emission of energy in the form of particles or photons. This phenomenon is called radioactive
decay, and while any given decay event occurs randomly, a large population of unstable “parent”
nuclides will decay over time to one or more “daughter” nuclides at a rate that is proportional to
the number of parent nuclides remaining. Thus, the time-rate of change in the number of parent
nuclides, dnp/dt, is described by

−
dnp

dt
∝ np, (A.1)

where np is the number of parent nuclides present at any given time, and the negative sign signifies
that the number of parent nuclides decreases over time. The proportionality expressed by Eq. (A.1)
is transformed into an equality by the introduction of a proportionality constant, λp, called the
decay constant:

−
dnp

dt
= λpnp. (A.2)

The value of λp is characteristic of each parent radionuclide, and describes the probability that a
parent nuclide will decay over a given time interval.

Rearranging Eq. (A.2) and preparing to integrate both sides, we obtain∫
dnp

1
np

=−
∫

dt λp. (A.3)

Assuming that λp is constant in time, we may integrate both sides to get

loge[np] =−λpt + c1, (A.4)

where loge[np] is the natural logarithm of np, and c1 is a constant of integration. Exponentiating
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both sides, we get

np = exp[−λpt + c1] = exp[c1]exp[−λpt] = c2 exp[−λpt]. (A.5)

To determine c2, we impose the initial condition that np(t = 0) = np0. Hence, c2 = np0, and

np(t) = np0 exp[−λpt]. (A.6)

The halflife, t1/2, of a radionuclide is defined as the amount of time that is required for half of
the initial parent population of a radionuclide to decay, i.e.

np(t = t1/2)≡
1
2

np0. (A.7)

From Eq. (A.6),
1
2

np0 = np0 exp[−λpt1/2] =⇒ 2 = exp[λpt1/2], (A.8)

and thus,

t1/2 =
loge[2]

λp
. (A.9)

Since np0 is not known a priori in most natural systems, we need to re-express Eq. (A.6) in terms
of measurable quantities, i.e. np and the total number of daughter nuclides nd . In the simplest case
where the parent nuclide only decays to one radiogenic daughter product, we may use the relation
np0 = np +n∗d to write

np = (np +n∗d)exp[−λpt], (A.10)

or, rearranging,

n∗d exp[−λpt] = np(1− exp[−λpt]) =⇒ n∗d = np(exp[λpt]−1), (A.11)

where n∗d is the number of radiogenic daughter nuclides. Because most natural samples also contain
some initial, non-radiogenic daughter nuclides, nd0, the total number of daughter nuclides is given
by nd = n∗d +nd0, and we may rewrite Eq. (A.11) as

nd = nd0 +np(exp[λpt]−1). (A.12)

Rearranging this equation to isolate eλpt , we get

exp[λpt] =
(

nd−nd0

np

)
+1. (A.13)
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Solving for t, we obtain the fundamental equation of geochronology:

t =
1

λp
loge

[(
nd−nd0

np

)
+1
]
. (A.14)

A.2 The K-Ar Age Equation

Of the three naturally occurring isotopes of K (39K, 40K , and 41K), 40K is the least abundant
(e.g., 0.0117 ± 0.0001 atom%; Endt, 1990), and produces 40Ca by beta-minus (β−) decay and
radiogenic 40Ar , i.e., 40Ar*, by electron capture (ε) and positron (β+) emission17. To account for
this ‘branched’ decay of 40K in the case of K-Ar geochronology, we may describe the fraction of
decays of parent 40K that produce daughter 40Ar* using the expression

40Ar∗ =
λ40Ar

λ

40K, (A.15)

where λ40Ar is the partial decay constant that accounts for the production of radiogenic 40Ar by ε

and β+ decay, and λ is the total decay constant for 40K . I will refer to the dimensionless quantity

λ40Ar
λ

as the branching ratio.
If we make the assumption that a system containing K formed without any inherited 40Ar (i.e.,

nd0 = 0 in Eq. (A.14)), then the total number of daughter atoms measured equals the number
produced by radioactive decay (i.e., nd = n∗d =⇒ 40Ar = 40Ar∗), and we may use Eq. (A.15) to
rewrite Eq. (A.14) as

t =
1
λ

loge

[
λ

λ40Ar

40Ar∗
40K

+1
]
, (A.16)

which is the general age equation for the K-Ar system (Eq. (1.1)). For more details on K-Ar dating,
see Dalrymple and Lanphere (1969).

A.3 The 40Ar/39Ar Age Equation

In practice, determining a date using the general K-Ar equation, Eq. (1.1), requires separate
measurements of the concentrations of 40Ar* and 40K using two splits from a (presumably ho-

17Note, while Beckinsale and Gale (1969) inferred that β+ emission contributed to the production of 40Ar*, i.e.,
λ40Ar = λε + λβ+ , this decay mode is commonly considered negligible, i.e., λ40Ar → λε (e.g., Renne et al., 2010).
However, I will use λ40Ar to imply that, where a non-zero value is reported, λβ+ should be included in calculating
λ40Ar.
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mogeneous) sample. An alternative approach is to irradiate a single split from a sample with
high-energy (‘fast’) neutrons, thereby converting some of the stable 39K of the sample into 39Ar
by the 39K(n,p)39Ar reaction (39Ar K hereafter), and allowing a date to be determined from a single
measurement. The amount of 39Ar K produced by irradiating a sample is given by

39ArK = 39K∆T
∫

dE φ(E)σ(E) (A.17)

where ∆T is the duration of the irradiation, φ(E) is the flux of neutrons with energy E, and σ(E)

is the neutron capture cross section at energy E for the 39K(n,p)39Ar reaction (Mitchell, 1968;
McDougall and Harrison, 1999).

For a sample with age t, Eq. (1.1) can be solved for 40Ar* and written as

40Ar∗ = 40K
λ40Ar

λ
(exp[λ t]−1). (A.18)

Dividing both sides of Eq. (A.18) by 39Ar K and using Eq. (A.17) in the denominator of the right-
hand-side, we can express the ratio of 40Ar* to 39Ar K produced during neutron irradiation of the
sample as ( 40Ar∗

39ArK

)
s
=

40K
39K

λ40Ar
λ

exp[λ t]−1
∆T
∫

dE φ(E)σ(E)
. (A.19)

Let us define the dimensionless factor

J ≡
39K
40K

λ

λ40Ar
∆T
∫

dE φ(E)σ(E), (A.20)

and rewrite Eq. (A.19) as ( 40Ar∗
39ArK

)
s
=

exp[λ t]−1
J

. (A.21)

The factor J is commonly called the irradiation parameter. Solving Eq. (A.21) for t, we obtain the
general 40Ar/39Ar age equation:

t =
1
λ

loge

[
J
( 40Ar∗

39ArK

)
s
+1
]
. (A.22)

In practice, the parameters φ(E) and σ(E) in Eq. (A.20) can be difficult to constrain. As an
alternative way to determine how much 39Ar K is produced in an unknown sample, Merrihue and
Turner (1966) described a method where a ‘monitor’ mineral with a well known age, tm, is co-
irradiated with the unknown. In this instance, we can use an equation of the form of Eq. (A.21) to
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write ( 40Ar∗
39ArK

)
m
=

exp[λ tm]−1
J

, (A.23)

from which it is easy to see that J can be equivalently expressed as

J =
exp[λ tm]−1

(40Ar∗/39ArK)m
. (A.24)

Thus, the age of the unknown sample can be determined relative to the age of the monitor min-
eral using Eq. (A.22) and Eq. (A.24) without having to determine φ(E) and σ(E) explicitly. For
additional details on 40Ar/39Ar dating, see McDougall and Harrison (1999).
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